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Ab initio calculations have been performed to determine the molecular structure and proton affinity of a set
of molecules. The basis sets were developed for pseudopotentials using the GCM procedure. This technique
is potentially useful for large molecules for which similar procedures (such as the G2 method and variations)
were not feasible. This method achieves performance similar to the G2 method at a lower computational
cost. The mean absolute deviation and the mean deviation of the results from experimental are 3.5 and 1.7
kJ mol-1, respectively, compared with 4.6 and 2.2 kJ mol-1 for the G2 method.

I. Introduction

Thermochemical data are among the most fundamental and
useful information of chemical species which can be used to
predict chemical reactivity and relative stability. Thus, it is not
surprising that an important goal of computational chemistry is
to predict thermochemical parameters with reasonable accuracy.
Reliability is a critical feature of any theoretical model, and

for practical purposes the model should be efficient in order to
be widely applicable in estimating the structure, energy, and
other properties of molecules.1

An important thermochemical property from a theoretical and
experimental point of view is the proton affinity of molecules
since it represents a fundamental gas-phase thermodynamic
property. Absolute values of proton affinities are not always
easy to obtain and are often derived from relative measurements
with respect to reference molecules. On the other hand, theo-
retical calculations represent one attempt to study absolute values
of proton affinities and other thermochemical properties.2 How-
ever, accurate calculations of these properties require sophis-
ticated and high-level methods and a great amount of compu-
tational resources. This is particularly true for atoms of the
second period and for calculating properties such as the proton
affinity of anions,

A critical feature in these calculations is to establish the best
possible basis set. This set should have enough flexibility to
give a correct description of the wave function for molecular
and atomic environments in ions as well as in neutral systems.
This is usually achieved by increasing the basis sets with
additional functions, generally diffuse functions.
A theoretical procedure that has found wide acceptability and

yields results comparable to experimental values (≈10 kJ mol-1)
is the GAUSSIAN-2 (G2) technique3 and its subsequent
derivations, G2(MP2),4 G2(MP2,SVP),5 etc. A typical G2
calculation requires the following steps: (1) optimization of the
molecular geometry and a vibrational analysis at the HF/6-31G-
(d) level; (2) optimization of the molecular geometry at the
MP2(Full)/6-31G(d) level; and (3) energy correction using the

geometry obtained in item (2) at the following levels: QCISD-
(T,E4T)/6-311G(d,p), MP4/6-311+G(d,p), MP4/6-311G(2df,p),
and MP2/6-311+G(3df,2p). The G2 method effectively cor-
responds to calculations at the QCISD(T)/6-311+G(3df,2p)//
MP2/6-31(d) level with ZPE and temperature corrections using
harmonic frequency analysis obtained at the HF/6-31G(d) level
(scaling of 0.8929) and high-level corrections. Attempts have
also been made based on density functional theory using
different types of functionals (B-LYP, B-P86, B3-LYP, and B3-
P86).6 The combination of Perdew and Becke’s exchange with
Proynov’s correlation functional has been observed to be the
most effective in reproducing proton affinities in close agreement
with the corresponding experimental value7 (this work is on a
very small set of systems).
The objective of the present work is to introduce an alternative

methodology for calculating thermochemical properties and in
particular for obtaining reliable proton affinities for molecular
systems. Our method makes use of the discretized version8,9

of the generator coordinate method (GCM)10,11to model atomic
basis sets in conjunction with a pseudopotential (effectiVe core
potential, ECP).12-14 The basis sets defined by GCM are
“similar in spirit” to theeVen-temperedbasis sets of Ruedenberg
and co-workers.15

This paper contains an elaborate description of the procedure,
considering (a) construction of small basis sets that adequately
describe neutral systems and anions and that allow for correction* E-mail: nelson@iqm.unicamp.br.
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TABLE 1: Optimized Discretization Parameters Obtained
by the GCM for the Atoms H, C, N, O, F, Si, P, S, Cl, and
Br and Calculated Atomic Energies (in au)a

s p d

Ω0 ∆Ω N Ω0 ∆Ω N Ω0 ∆Ω N E

H -2.141 1.276 5 0.000 1 -0.499 580 6
C -3.668 1.259 7-2.071 1.191 5-0.670 1 -5.405 472 8
N -3.133 1.223 7-1.723 1.191 5-0.214 1 -9.733 578 3
O -1.590 1.199 7-1.554 1.222 5 0.085 1-15.822 349 8
F -1.442 1.237 7-1.779 1.296 5 0.257 1-24.061 283 3
Si -2.097 1.157 7-3.307 1.168 5-0.968 1 -6.434 344 4
P -2.168 1.204 7-2.581 0.993 5-0.427 1 -3.746 895 1
S -2.284 0.758 7-2.431 1.026 5-0.842 1 -10.046 298 3
Cl -1.854 1.200 7-2.225 1.029 5-0.158 1 -14.849 155 5
Br -2.038 1.206 7-2.318 0.986 5-0.337 1 -13.287 314 4

a The calculated atomic energies were obtained using eq 4.
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of the diffuse character of anionic species in a simple and sys-
tematic way; (b) derivation of adapted basis sets to be used
with effective core potentials, which considerably reduced com-
putational demands when compared with calculations employing
all electrons;16 (c) comparison of the calculated results with those
obtained by more sophisticated techniques and with available
experimental data; and (d) application of the present methodol-
ogy to systems where use of previous techniques has not been
possible because of either computational limitations or the
absence of suitable basis sets.16

II. Computational Methods

The GCM has been very useful in the study of basis sets.17-21

It considers the monoelectronic functionsψ(1) as an integral
transform,

wheref(R) andφ(R, 1) are the weight and generator functions,
respectively (Gaussian function used in this work) andR is the
generator. The existence of the weight functions (graphical
display of the linear combination of basis functions) is an
essential condition for the use of GCM. Analysis of the
behavior of the weight functions by the GCM permits the atomic
basis set to be adapted in such a way as to yield a better
description of the core electrons (represented by ECP) and the
valence orbitals (corrected by addition of the extra diffusion
functions), in the molecular environment.
With the exception of some simple systems the analytical

expression of the weight functions is unknown. Thus, an ana-
lytical solution of the integral transform (eq 2) is not viable in
most cases and suggests the need of numerical techniques to

Figure 1. Weight functions for the F atomic orbitals: (a) 2s and (b) 2p for the all-electron (ae) systems, with pseudopotential (pp), and after the
addition of extra functions (pp+). Weight functions for the HF outermost molecular orbitals of symmetries (c)σ and (d)π, respectively.

ψ(1))∫0∞f(R) φ(R, 1) dR (2)
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solve eq 2.8 The solution can be carried out by an appropriate
choice of discrete points on the generate coordinate, represented
by

The discretization of the set is defined by the following
parameters: an initial value (Ω0), an increment (∆Ω), and the
number of primitives used (N) for a given orbitalk (s, p, d, ...).
The search for the best representation is obtained using the total
energy of the electronic ground state as the minimization
criterion.
The SIMPLEX search method22 was adapted to the

GAUSSIAN/0423 program to provide the minimum energy of
the electronic ground state of the atom corresponding to the
optimized discretization parameters. The basic procedure

consists of the following steps: (a) The first is a search of the
optimum discretized parameter set for the atoms using the GCM
for variation on the generator coordinate space. The core
electrons are represented by a pseudopotential, where these
discretization parameters are defined in conjunction with ECP.
The minimum energy criterion is observed, and the character-
istics of the atomic orbital weight functions are analyzed. These
basis sets are designated as ECP/GCM. (b) The second step is
optimization of the molecular geometries of the molecules at
the MP2/(ECP/GCM) level. Further vibrational analysis is
carried out at the equilibrium geometries. At the MP2 equi-
librium geometry corrections to the total energies are performed
at a higher level of theory. First, this is done to the QCISD-
(T)/(ECP/GCM) level and, later, by addition of extra functions
(s, p, d and f). These diffuse functions are obtained by observing

Figure 2. Weight functions of the inner atomic orbitals for Si: (a) 1s, 2s, and (b) 2p in systems for all-electron calculations (ae) and the valence
atomic orbitals (c) s and (d) p from calculations using effective core potential (pp). The uncontracted DZV basis set was used to obtain the primitive
basis set by GCM. The valence region was corrected by addition of extra functions (+).

Ri,(k) ) exp[Ω0,(k) + (i - 1)∆Ω(k)], i ) 1, 2, 3, ...,N(k) (3)
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the convergent behavior of the weight functions of the outer
atomic orbitals (s and p). Calculations are then carried out at
the MP2/(ECP/GCM+) level. Thus, these results coupled to
additive approximations for the energy yield an effective
calculation at a high level of theory,

where in (MP2/ECP/GCM+) the + sign represents the extra
functions needed for the correct description of the electronic
distribution in an anion (diffuse character of electronic cloud).

III. Results and Discussion

Table 1 shows the optimal atomic discretization parameters
obtained according to eq 3.24 These parameters are adapted to
provide the minimum energy of the electronic ground state of
the respective atom.8 An s and one p (R ) 1.0) function were
used for the H atom. The diffuse character was corrected in
the molecular environment adding an s function and representing
the p orbitals byR ) 0.5 andR ) 2.0.25 The procedure
employed to add diffuse functions is given in ref 26.
The atoms of the second and third periods, as shown in Table

2, were represented by a (7s5p1d) basis set. The required
additional functions provided sets with (8s6p2d2f). The expo-
nents of the f primitives are the same as those of the d primitives.
For example, the oxygen atom, with the parametersΩ0(s) )
-1.590,∆Ω(s) ) 1.199,N(s) ) 7, Ω0(p) ) -1.554,∆Ω(p) )
1.222,N(p) ) 5,Ω0(d) ) 0.085, andN(d) ) 1, using eq 3 results
in the following basis sets:R(s) ) {0.205, 0.679, 2.252, 7.466,
24.755, 82.075, and 272.123}; R(p) ) {0.211, 0.717, 2.434,
8.259, and 28.028}; R(d) ) {1.092}. The extra functions are
R(s) ) {0.062}, R(p) ) {0.062}, R(d) ) {0.717}, andR(f) )
{1.092 and 0.717}.
For bromine, additional d and f type extra functions were

necessary, resulting in a (8s6p3d3f) basis set.
In all cases, the process involved in obtaining the basis sets

from discretization parameters by GCM and the addition of extra
functions were carried out by analysis of the behavior of the
weight functions of atomic orbitals at the Hartree-Fock level.
Figure 1a,b displays the graphical representation of the 2s and
2p atomic orbital weight functions of the F atom. The weight
functions calculated with all the electrons are drawn as a
continuous line, while those using the pseudopotential are shown
by a dashed line. In the valence region (small ln(R)), the weight
function presents a deficiency which requires correction by the
addition of extra functions (horizontal dot-dashed line). In the
core region (Figure 1a) some primitive functions,f(R) ≈ 0, can
be eliminated. Therefore, by analysis of the weight functions
it is possible to define the cutoff (vertical dot-dashed line) from
where the pseudopotential starts to act, and consequently some
primitives can be eliminated.
Figure 1c,d shows the weight functions of fluorine in the

molecular environment (HF molecule). In this figure, the weight
functions of the outermostσ and π molecular orbitals are
represented. The asymptotic behavior of the weight functions
can be observed in the inner and valence regions. In the central
regions, the weight functions have regular and smooth behavior,
which is basic of the GCM.
Using the uncontracted double-zeta valence basis set (DZV)31

as an example, it can be observed in Figure 2a,b a regular
behavior of the weight functions of the atomic orbitals 1s, 2s,
and 2p for Si (solid lines for uncontracted DZV). However,

the valence orbitals (3s and 3p, Figure 2c,d, respectively) do
not display the same asymptotic behavior. In the anionic
molecular environment, a correct representation of the diffuse
character of the electronic cloud is needed. The cutoff is defined
by the GCM in conjunction with the ECP. The core electrons
are represented by the pseudopotential, and addition of extra
functions yields the correct description of the weight functions.
Figure 3a,b is a graphical display of the weight functions for

the highest molecular orbitals of symmetryσ for the CH2N-

anion and the neutral molecule CH2NH, respectively. The more
important atomic contributions on these orbitals are observed.
These weight functions are defined from the basis sets given in
Table 1. It can also be observed that the weight functions are
well-described in a molecular environment. This is an important
finding that further lends support to the adopted procedure.

E(QCISD(T)/(ECP/GCM+)) ≈ E(QCISD(T)/
(ECP/GCM))- E(MP2/(ECP/GCM)+

E(MP2/ECP/GCM+)) (4)

Figure 3. Weight functions of the molecular orbitals of symmetryσ
to the (a) anion CH2N- and to the (b) neutral molecule CH2NH, with
contributions of the most important atomic orbitals of H (continuous
line), C (dashed line), and N (dotted line).
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These functions have regular asymptotic behavior in the
molecular environment (mainly anionic environment).
Table 2 shows the results of the acidity (in kJ mol-1) for a

set of molecular systems. These results were obtained using
the basis sets given in Table 1. A comparison is also presented
with selected values obtained by the G2 method and with
experimental results (the results of this work are corrected to
give the appropriate thermal corrections, ZPE,∆Hvib, ..., such
as the G2 method). The mean absolute deviation and the mean
deviations of the results from the experimental values are 3.5
and 1.7 kJ mol-1, respectively, compared with 4.6 and 2.2 kJ
mol-1 of G2.6 Thus, our calculated values are very near the
experimental results and the more sophisticated G2 data in most
of the cases (well within 10 kJ mol-1).
The present methodology, which relies on small basis sets

(representation of the core electrons by ECP) and an easier and
simpler way for correcting the valence regions (mainly of
anionic systems), appears as an interesting alternative for the
calculation of thermochemical data such as proton affinity for
larger systems.

IV. Conclusion

The proton affinities of some simple systems obtained by
the procedure outlined in this paper are in very good agreement
with experimental values and with those obtained by sophisti-
cated and computationally more expensive calculations.
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à Pesquisa de Sa˜o Paulo).

References and Notes

(1) Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B.J. Am. Chem.
Soc.1995, 117, 11299.

(2) Smith, B. J.; Radom, L.J. Phys. Chem.1991, 95, 10549,
(3) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A.J.

Chem. Phys.1991, 94, 7221.
(4) Curtiss, L. A.; Raghavachari, K.; Pople, J. A.J. Chem. Phys.1993,

98, 1293.
(5) Smith, B. J.; Radom, L.J. Phys. Chem.1995, 99, 6468.
(6) Smith, B. J.; Radom, L.Chem. Phys. Lett.1995, 245, 123.
(7) Chandra, A. K.; Goursot, A.J. Phys. Chem.1996, 100, 11596.
(8) Custodio, R.; Goddard, J. D.; Giordan, M.; Morgon, N. H.Can. J.

Chem.1992, 70, 580.
(9) Custodio, R.; Giordan, M.; Morgon, N. H. Goddard, J. D.Int. J.

Quantum Chem.1992, 42, 411.
(10) Mohallem, J. R.; Dreizler, R. M.; Trsic, M.Int. J. Quantum Chem.

Symp.1986, 20, 45.
(11) Mohallem, J. R.Z. Phys. D1989, 3, 339.
(12) Stevens, W. J.; Basch, H.; Kraus, M.J. Chem. Phys.1984, 81,

6026.
(13) Stevens, W. J.; Kraus, M.; Basch, H.; Jansien, P.Can. J. Chem.

1992, 70, 612.
(14) Cundari, T. R.; Stevens, W. J.J. Chem. Phys.1993, 98, 5555.
(15) Feller, D. F.; Ruedenberg, K.Theor. Chim. Acta1979, 52, 231.
(16) The GCM/ECP computational demand is reduced by≈ 30% when

compared with all-electron calculations using the same procedure. The G2
and G2MP2 calculations of systems containing first-row atoms are faster
than GCM/ECP. However, for molecules containing at least one second
(or third) row atom the use of GCM/ECP is faster than G2 and G2MP2. In
an attempt to carry out reliable comparisons of CPU time, the Hessian
matrices used in all calculations were obtained numerically.

(17) Morgon, N. H.; Custodio, R.; Riveros, J. M.Chem. Phys. Lett.1995,
235, 436.

(18) Morgon, N. H.; Linnert, H. V.; Riveros, J. M.J. Phys. Chem.1995,
99, 11667.

(19) Morgon, N. H.J. Phys. Chem.1995, 99, 17832.
(20) Tanabe, F. K. J.; Morgon, N. H.; Riveros, J. M.J. Phys. Chem.

1996, 100, 2862.
(21) Morgon, N. H.; Argenton, A. B.; Silva, M. L. P.; Riveros, J. M.J.

Am. Chem. Soc.1997, 119, 1708.
(22) Nelder, J. A.; Mead, R.Comput. J.1965, 7, 308.
(23) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.;

Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M.
A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley,
J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.;
Stewart, J. J. P.; Pople, J. A.Gaussian/94, Revision D.2; Gaussian, Inc.:
Pittsburgh, PA, 1994.

(24) Table 1 shows all basis sets employed in this work. They are
represented as parameters of a geometrical basis set in a format equivalent
to that employed by Ruedenberg (ref 15) when describing theeVen-tempered
basis functions. Equation 3 describes how to obtain the geometric sequence.
References 8 and 9 are suggested for readers interested in more detailed
information on the geometric sequence used.

(25) Since geometric sequences are being used as basis functions, the
inclusion of diffuse functions is almost trivial. However, since the inclusion
of these types of functions is associated with the GCM, ref 25 is suggested
for further information.

(26) Morgon, N. H.; Custodio, R.; Tostes, J. G. R.; Taft, C. A.J. Mol.
Struct.(THEOCHEM) 1995, 335, 11.

(27) Smith, B. J.; Pople, J. A.; Curtiss, L. A.; Radom, L.Aust. J. Chem.
1992, 45, 285.

(28) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G.J. Phys. Chem. Ref. Data Suppl.1988, 1, 17.

(29) Ervin, K. M.; Gronert, S.; Barlow, S. E.; Gilles, M. K.; Harrison,
A. G.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C.; Ellison, G. B.
J. Am. Chem. Soc.1990, 112, 5750.

(30) Graull, S. T.; Squires, R. R.J. Am. Chem. Soc.1990, 112, 2517.
(31) Dunning, T. H., Jr.; Hay, P. J. InMethods of Electronic Structure

Theory; Shaefer, H. F., III, Ed.; Plenum Press: New York, 1977; Chapter
1, pp 1-27.

TABLE 2: Acidity (in kJ mol -1) Calculated with the Basis
Sets Shown in Table 1 and Comparison with Results
Calculated by the G2 Method and with Experimental Values

PA (298 K)

system this work G2a experimentalb

H2 1673 (-2)c 1680 (15) 1675
CH4 1743 (-1) 1751 (7) 1744( 7
NH3 1692 (3) 1690 (1) 1689( 3
H2O 1635 (0) 1631 (-4) 1635
HF 1553 (-1) 1551 (-3) 1554( 1
SiH4 1559 (1) 1564 (6) 1558( 8, 1562( 10
PH3 1551 (-7) 1540 (-4) 1544( 6, 1552( 8
H2S 1471 (1) 1473 (3) 1470( 2, 1469( 10
HCl 1397 (2) 1398 (3) 1395( 1
HBr 1355 (1) 1355 (1) 1354
CH3NH2 1681 (-6) 1688 (1) 1687( 5d

CH3OH 1598 (1) 1601 (4) 1597( 3d, 1595( 2
CH3F 1710 (-1) 1717 (6) 1711( 17e

CH3SH 1491 (-2) 1498 (5) 1493( 12
CH3Cl 1656 (-1) 1665 (8) 1657( 15
CH2dCH2 1703 (-10) 1709 (-4) 1713( 3d, 1699
HCCH 1571 (-10) 1579 (-2) 1581( 3d, 1589( 2
CH2dO 1646 (0) 1654 (8) 1646( 3
HCN 1461 (-8) 1466 (-3) 1469( 8, 1461( 10
HCO2H 1439 (-5) 1437 (-7) 1444( 12
CH3CHO 1539 (-6) 1537 (4) 1533( 12, 1531( 12
CH2CO 1533 (6) 1533 (6) 1527( 11
CH2NH 1631 (6) 1635 (10) 1625( 22

aRef 6. b For the hydrogen anion (H-) was used the exact energy,
ref 27. c Absolute experimental acidities from ref 28, unless otherwise
noted. The numbers in parentheses are differences between theoretical
and experimental data.dRef 29.eRef 30.
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